Superconducting Detectors for Superlight Dark Matter

Yonit Hochberg

YH, Zhao and Zurek, PRL 116 no.1, 011301 (2015) **YH**, Pyle, Zhao and Zurek, JHEP 1608, 057 (2016) **YH**, Lin and Zurek, PRD 94 no.1, 015019 (2016)

Outline

- What?
- How?
- Rates
- Results

What?

"Beyond the WIMP lalalalalala"

e.g.: Asymmetric dark matter [Kaplan, Luty, Zurek, 2009]
SIMPs [YH, Kuflik, Volansky, Wacker, 2014]
Forbidden dark matter [Griest, Seckel, 1991; D'Agnolo, Ruderman, 2015]

How?

What's going on?

Looking at nuclear recoils: think billiard balls

Looking at nuclear recoils: think billiard balls

• Light dark matter: scatter off electrons!

Light dark matter: scatter off electrons!

Kinetic energy available: $E_D \sim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 \sim 10^{-6} m_{\rm DM}$

 $m_{\rm DM} \sim {\rm MeV} \Rightarrow E_D \sim {\rm eV}$

electron ionization, semiconductors

Xenon: ~12 eV

Ge, Si: ~eV

[Essig et al 2012; Graham et al 2012; Xenon10 data: Essig et al 2012]

• Light dark matter: scatter off electrons!

Kinetic energy available: $E_D \sim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 \sim 10^{-6} m_{\rm DM}$

$$m_{\rm DM} \sim {\rm MeV} \Rightarrow E_D \sim {\rm eV}$$

electron ionization, semiconductors

$$m_{\rm DM} \sim {\rm keV} \Rightarrow E_D \sim {\rm mili-eV}$$

Light dark matter: scatter off electrons!

Kinetic energy available: $E_D \sim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 \sim 10^{-6} m_{\rm DM}$

$$m_{\rm DM} \sim {\rm MeV} \Rightarrow E_D \sim {\rm eV}$$

electron ionization, semiconductors

$$m_{\rm DM} \sim {\rm keV} \Rightarrow E_D \sim {\rm mili\text{-}eV}$$
 Superconductors!

[YH, Zhao and Zurek, PRL 2015; YH, Pyle, Zhao and Zurek, JHEP 2016]

Kinematics

Target at rest:

$$E_D \sim \frac{q^2}{2m_T}$$

- Target = N: $q_{\rm max} \sim 2 \mu_r v_{\rm DM} \sim 2 m_{\rm DM} v_{\rm DM}$ Even for $\sigma_E \sim {\rm eV}$, only $m_{\rm DM} \sim \mathcal{O}(100'{\rm s~MeV})$ detectable
- Target = e: $m_{\rm DM} \sim {\rm keV}$ \Longrightarrow $E_D \sim 10^{-6}~{\rm eV}$

$$m_{\rm DM} \sim {
m MeV}$$
 \Longrightarrow $E_D \sim {
m eV}$ [seminconductors]

Even $\sigma_E \sim \text{meV}$ won't allow sensitivity to keV DM

Kinematics

Target w/ velocity:

$$E_D \sim \left(\frac{\vec{q}^2}{2m_T} + \vec{q} \cdot \vec{v}_T\right) + \delta$$

• $m_{\rm DM}\gg m_T$ DN

DM barely affected

$$v_T \rightarrow v_T + 2v_{\rm DM}$$

$$E_D^{\text{max}} = \frac{1}{2} m_T \left[(v_T + 2v_{\text{DM}})^2 - v_T^2 \right]$$

• $m_{\rm DM} \ll m_T$

Target can fully stop the DM

$$E_D^{\rm max} \sim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2$$

$$\sigma_E \sim {
m meV}$$
 for $m_{
m DM} \sim {
m keV}$!

Kinematics

Target w/ velocity:

$$E_D \sim \left(\frac{\vec{q}^2}{2m_T} + \vec{q} \cdot \vec{v}_T\right) + \delta$$

Fermi-degenerate materials have velocity!

Focus on superconductor targets.

- Ground state of superconductor = Cooper pairs; Binding energy (gap) $\Delta \lesssim \text{mili-eV}$
- The idea:

DM scatters with Cooper pairs, deposits enough energy, breaks Cooper pairs, creating excitations \rightarrow detect

- For energies exceeding the gap, scatter with free electrons in a Fermi-degenerate sea ("coherence factor" → 1)
- Ram an electron, create excitations which random walk until collected by e.g. a Transition Edge Sensor (TES)

Heat calorimeter

TESs used to detect microwaves and x-rays in astro applications (e.g. ACT, SPT, SuperCDMS)

Current status?

Not there yet

TES	$T_c [mK]$	Volume $[\mu m \times \mu m \times nm]$	Power Noise $[W/\sqrt{Hz}]$	$\sigma_E^{ m now}$ [me	$[\sigma_E^{\text{scale}} \text{ [meV]}]$
W [3]	125	$25 \times 25 \times 35$	2.72×10^{-18}	120	1.1
Ti [5]	50	$6 \times 0.4 \times 56$	2.97×10^{-20}	47	22
MoCu [6]	110.6	$100\times100\times200$	4.2×10^{-19}	295.4	0.3

- Need to beat noise
- Energy resolution $\sigma_E \propto \sqrt{T^3 V}$

Reduce temperature and volume for O(meV) resolution

(See talk by Matt Pyle tomorrow)

Current status?

Not there yet

TES	$T_c [mK]$	Volume $[\mu m \times \mu m \times nm]$	Power Noise $[W/\sqrt{Hz}]$	σ_E^{now} [me	$V] \sigma_E^{\text{scale}} \text{ [meV]}$
W [3]	125	$25 \times 25 \times 35$	2.72×10^{-18}	120	1.1
Ti [5]	50	$6 \times 0.4 \times 56$	2.97×10^{-20}	47	22
MoCu [6]	110.6	$100\times100\times200$	4.2×10^{-19}	295.4	0.3

- Need to beat noise
- Energy resolution $\sigma_E \propto \sqrt{T^3V}$

Reduce temperature and volume for O(meV) resolution

(Volume: $25 \mu {
m m} \times 6 \mu {
m m} \times 35 {
m nm}$, Operating temp': $T_c \sim 10 {
m mK}$)

Basic device idea:

Large exposure but high energy resolution = excitation concentration (E.g. SuperCDMS)

Absorber →
Collection fins →
TES

Basic device idea:

Large exposure but high energy resolution = excitation concentration

To be efficient:

absorber size of order elastic scattering length

long-lived excitations travel ballistically

 Excitation lifetime of order a milisecond

• With velocity $10^{-2}c$, plenty of time to random walk and get absorbed before recombine

Comments:

- Low energy deposits: gapless absorber such as a metal
- But better -- metal in superconducting phase:
 - gap controls the thermal noise
 - makes excitations long lived → easier to collect

Comments:

 Design for collection of either

		Quasiparticle Detector	Athermal Phonon Detector
	Number of Detectors	750	750
		Aluminum Absorber	Tantalum Absorber
	Absorber Volume	$5 \times 5 \times 5 \text{ mm}^3$	$5 \times 5 \times 5 \text{ mm}^3$
	Excitation Scattering Length	> 5 mm (> 2 mm [32])	> 5 mm
	Excitation Lifetime	20 ms (> 2 ms [33])	1.2 ms
			(1250 surface bounces)
$f_{\rm cascade}$	Fraction of Recoil Energy in	$\sim 60\%$	$\sim 95\%$
	Excitation System		(all QP have recombined [33])
	Characteristic Group Velocity	$\sim 2 \times 10^{-3}$	10^{-5}
		Tungsten QP Collector	Aluminum Phonon Collector
A_{collect}	Total Area of All Collection	$12 \times 225 \ \mu \text{m}^2$	$2 \times 0.21 \text{mm}^2$
	Fins on a Detector		
$h_{ m collect}$	Thickness of Collection Fins	\sim 150 nm	$\sim 900 \ \mathrm{nm}$
f_{trap}	Excitation Trapping Fraction	0.1	0.5 [51]
$ au_{ m collect}$	Excitation Collection Time	3 ms	700 μs
$f_{ m collect}$	Excitation Collection Efficiency	87%	63%
$f_{\rm ERemain}$	Fraction of Potential Energy	~ 0.90	0.60×0.65
	Remaining After Collection		
		Tungsten TES	Tungsten TES
	Number of TES per detector	6	2
$V_{\rm TES}$	Total Volume of all TES	$6 \times 1 \mu \text{m} \times 20 \mu \text{m} \times 35 \text{nm}$	$2 \times 1 \mu \text{m} \times 20 \mu \text{m} \times 35 \text{nm}$
	on a detector		
T_c	Transition Temperature	9 mK	9 mK
C_{TES}	Heat Capacity	$1.0 \times 10^{-17} \text{ J/K}$	$4.0 \times 10^{-18} \text{ J/K}$
α	Dimensionless Sensitivity	30	30
	Bias Power	$7.0 \times 10^{-20} \text{ W}$	$2.8 \times 10^{-20} \text{ W}$
$\sqrt{S_{\text{p,tot}}(0)}$	Total Power Noise	$4.4 \times 10^{-22} \text{ W}/\sqrt{\text{Hz}}$	$2.8 \times 10^{-22} \text{ W}/\sqrt{\text{Hz}}$
$ au_{ m eff}$	Sensor Fall-Time	10 ms	10 ms
	Collector to TES Efficiency	1	0.74
$\sigma_{\rm ETES}$	TES Energy Resolution	0.3 meV	0.2 meV
σ_{ED}	Detector Recoil Resolution	$0.6 \; \mathrm{meV}$	0.7 meV
	$=\sigma_{\text{E TES}}/(f_{\text{E Remain}}f_{\text{collect}}f_{\text{cascade}})$		
	Energy Threshold (6 σ_{ED})	$3.9 \; \mathrm{meV}$	4.2 meV

Comments:

- Design for collection of either
- Proof of concept

Scatter off electrons in Fermi-degenerate metal – Pauli blocking

Results

Reach

Reach

Superconductors with 1 meV or 10 meV threshold $m_X[\text{GeV}]$

kg-year reach

$$\tilde{\sigma}_{\mathrm{DD}}^{\mathrm{light}} = \frac{16\pi\alpha_{e}\alpha_{X}}{q_{\mathrm{ref}}^{4}}\mu_{eX}^{2}$$

$$q_{\mathrm{ref}} \equiv \mu_{eX}v_{X}$$

YH @ sub-eV, Dec. 2016

Absorption vs. Scattering

Not only DM scattering – sensitive to DM absorption too (Any target!)

Absorption sensitive to much lighter DM masses

(see talk by Tongyan Lin on Friday)

Absorption

Relate to optical properties of a given material

[YH, Lin and Zurek, PRD 2016]

Absorption

[YH, Lin and Zurek, PRD 2016]

YH @ sub-eV, Dec. 2016

Superconductors are super awesome.

Downside?

Metals are shiny

In-medium effects are substantial – photon picks up mass. If kinetically-mixed hidden photon mediator:

$$\langle |\mathcal{M}|^2 \rangle \simeq \frac{16 m_e^2 m_\chi^2 g_\chi^2 e^2 \epsilon^2}{\left(q^2 - m_{A'}^2\right)^2 \left(1 - \Pi_L/|\mathbf{q}|^2\right)^2} \quad \begin{array}{c} \text{In-medium} \\ \text{polarization tensor} \end{array}$$

Kinetically mixed hidden photon

Absorber with reduced optical response would be better

$$\hat{\sigma}_{\mathrm{DD}}^{\mathrm{light/heavy}} \equiv \tilde{\sigma}_{\mathrm{DD}}^{\mathrm{light/heavy}} \times \left(\frac{q_{\mathrm{ref}}}{\mathrm{keV}}\right)^4$$

YH @ sub-eV, Dec. 2016

Semimetals = ~ 3D graphene

Topological properties

Semimetals for light DM -- works in progress:

YH, Kahn, Lisanti, Neaton, Zurek....; Grushin, YH, Ilan, Zurek

YH @ sub-eV, Dec. 2016

Optical response ('photon mass')

Summary

- Proposed new class of detectors using superconductors
- Sensitive to O(meV) energy deposits

 keV dark matter via scattering
 meV dark matter via absorption
- R&D to lower noise such that O(meV) energies are detectable. (Port over everything being done now for semiconductors.)

Prospects

Prospects

[YH, Zhao, Zurek 2015; YH, Zhao, Pyle, Zurek 2015; Schutz, Zurek 2014; YH, Kahn, Lisanti, Tully, Zurek 2016; Derenzo et al 2016; Essig et al 2016]

Prospects

[YH, Khan, Lisanti, Neaton, Zurek...; Grushin, YH, Ilan, Zurek; works in progress]

Thanks!

Backup

		Quasiparticle Detector	Athermal Phonon Detector
	Number of Detectors	750	750
		Aluminum Absorber	Tantalum Absorber
	Volume	$5 \times 5 \times 5 \text{ mm}^3$	$5 \times 5 \times 5 \text{ mm}^3$
	Excitation Scattering Length	> 5 mm (> 2 mm [31])	> 5 mm
	Excitation Lifetime	10 ms (> 2 ms [32])	1.2 ms
			(1250 surface bounces)
	Fraction of Recoil Energy	$\sim 60\%$	$\sim 95\%$
	in Excitation System		(all QP have recombined [32])
	Characteristic Group Velocity	$\sim 2 \times 10^{-3}$	10^{-5}
		Tungsten QP Collector	Aluminum Phonon Collector
	Number of Collection Fins	6×2	2×4
A_{collect}	Total Area of All Collection Fins	$12 \times 400 \ \mu \text{m}^2$	$2 \times 0.21 \text{mm}^2$
$h_{ m collect}$	Thickness of Collection Fins	\sim 150 nm	$\sim 900 \text{ nm}$
$f_{ m trap}$	Excitation Trapping Fraction	0.1	0.5 [50]
$ au_{ m collect}$	Excitation Collection Time	3.4 ms	$700 \mu s$
$f_{ m collect}$	Excitation Collection Efficiency	0.75	0.63
	Fraction of Energy	~ 0.90	0.60
	Remaining After Collection		
		Tungsten TES	Tungsten TES
	Number of TES	6	1
V_{TES}	Total Volume of TES	$6 \times 1 \mu \text{m} \times 24 \mu \text{m} \times 35 \text{nm}$	$2\times1\mu\mathrm{m}\times24\mu\mathrm{m}\times35\mathrm{nm}$
T_c	Transition Temperature	9 mK	9 mK
C_{TES}	Heat Capacity	$1.2 \times 10^{-17} \text{ J/K}$	$4.0 \times 10^{-18} \text{ J/K}$
α	Dimensionless Sensitivity	20	20
	Bias Power	$8.3 \times 10^{-20} \text{ W}$	$2.8 \times 10^{-20} \text{ W}$
$\sqrt{S_{ m p,tot}(0)}$	Total Power Noise	$4.9 \times 10^{-22} \text{ W}/\sqrt{\text{Hz}}$	$2.8 \times 10^{-22} \text{ W}/\sqrt{\text{Hz}}$
$ au_{ ext{eff}}$	Sensor Fall-Time	10 ms	10 ms
	Collector to TES Efficiency	1	0.74
$\sigma_{ m E,TES}$	TES Energy Resolution	$0.4~\mathrm{meV}$	0.2 meV
$\sigma_{ m E,D}$	Detector Recoil Resolution	$0.9~\mathrm{meV}$	0.8 meV

Backgrounds

1meV – 1eV: less than 1 event/kg-yr 10meV-10eV: 3 events/kg-yr

Pauli Blocking

Constraints

- Self-interactions of dark matter
- Stellar emission of light particles
- Kinetic decoupling @ recombination
- N_{eff}
- Terrestrial: beam dump, (g-2), low energy machines,

Kinetically mixed hidden photon

Absorber with reduced optical response would be better

$$\hat{\sigma}_{\mathrm{DD}}^{\mathrm{light/heavy}} \equiv \tilde{\sigma}_{\mathrm{DD}}^{\mathrm{light/heavy}} \times \left(\frac{q_{\mathrm{ref}}}{\mathrm{keV}}\right)^{4}$$

YH @ sub-eV, Dec. 2016

Kinetically mixed hidden photon

Massive kinetically mixed $U(1)_D$

Absorber with reduced optical response would be better

$$\hat{\sigma}_{\mathrm{DD}}^{\mathrm{light/heavy}} \equiv \tilde{\sigma}_{\mathrm{DD}}^{\mathrm{light/heavy}} \times \left(\frac{q_{\mathrm{ref}}}{\mathrm{keV}}\right)^4$$

YH @ sub-eV, Dec. 2016

Milli-charged DM

Concentration & Collection

bounces until collected =
$$\frac{A_{\text{absorber}}}{A_{\text{collect}}} \frac{1}{f_{\text{trap}}}$$

$$\tau_{\text{collect}} = \frac{4V_{\text{absorber}}}{\langle |v| \rangle A_{\text{collect}}} \frac{1}{f_{\text{trap}}}$$

excitation collection efficiency =
$$f_{
m collect} = rac{ au_{
m life}}{ au_{
m life} + au_{
m collect}}$$

$$n_e = \frac{(E_F m_e)^{3/2}}{3\pi^2}$$

$$\xi_0 = v_F/(\pi\Delta)$$

macroscopic correlation length, ~micron

Some Constraints

Self-interactions:

$$\frac{\sigma_T}{m_X} \lesssim 1 - 10 \text{ cm}^2/\text{g}$$

$$\sigma_T^{\text{light}} \approx \frac{16\pi \ \alpha_X^2}{v^4 m_X^2} \ln \beta^{-1} \,, \quad \beta = \frac{2m_\phi \alpha_X}{m_X v^2} \ll 1$$

$$(\alpha_X)_{\text{SIDM}}^{\text{light}} \lesssim 4 \times 10^{-17} \left(\frac{m_X}{\text{keV}}\right)^{3/2} \left(\frac{v}{10^{-4}}\right)^2 \left(\frac{58}{\ln \beta^{-1}}\right)^{1/2}, \quad \beta = \frac{2m_\phi \alpha_X}{m_X v^2}$$

Decoupling @ recombination:

$$\Gamma_p = \sum_{b=e,p} \frac{8\sqrt{2\pi}n_b\alpha_X\alpha_b\mu_{bX}^{1/2}}{3m_XT^{3/2}} \ln\left[\frac{3T\lambda_{\rm cut}}{\sqrt{\alpha_b\alpha_X}}\right] \bigg|_{T=\hat{T}} \lesssim H|_{T=\hat{T}}$$

$$(\alpha_X\alpha_e)_{\rm kin.\ dec.}^{\rm light} \lesssim 10^{-19} \left(\frac{m_X/\sum_{b=e,p}\sqrt{\mu_{bX}}}{\rm keV}^{1/2}\right) \left(\frac{50}{\rm ln}\right)$$

Some Constraints

Stellar: $g_e^{\rm brem} \lesssim 1.3 \times 10^{-14}$ [HB]

(trapping in supernova releases $g_e \gtrsim 10^{-6}$)

Kinetically mixed hidden photon $10^{-5}~{
m eV} \lesssim m_\phi \lesssim {
m eV}$

 $\begin{array}{ll} \mbox{Higgstrahlung}: & \epsilon \; \left(\frac{q_{H_D}g_X}{0.1}\right) \lesssim 8 \times 10^{-14} \quad [\mbox{HB}] \,, \\ \\ \mbox{Resonance conversion}: & \epsilon \; \left(\frac{m_{A'}}{\mbox{eV}}\right) \lesssim 4 \times 10^{-12} \quad [\mbox{Sun}] \,, \end{array}$

What About Direct Quasiparticle Creation?

Long scattering length superconducting crystal: qp's diffuse

Architectures:

KID on insulator, qps collected via thick superconducting film

Technically straightforward to imagine a design:

Avoids having to deal with operating KID on superconductor

Requires good trapping: qps from crystal into collector film, from collector film into KID

Problem: fast trapping require large Δ ratio; large Δ ratio \rightarrow lots of energy lost to phonon emission

Maybe still ok if just interesting in counting substrate qps (still can get meV threshold)

KID on crystal

Need to avoid short-circuiting KID: microstrip structure?

Film needs to be thick to avoid being proximitized by crystal (Δ_{KID} pulled to $\Delta_{crystal}$)

No obvious advantage over phonon mediation for NR detection

Phonons already provide sensitivity to meV scale

KIDs are already pair-breaking detectors: insensitive to sub-gap phonons in principle

But definitely interesting for electron scattering

Xenon10 data

Sub-GeV dark matter -- look for electron ionization signals

[Essig, Manalaysay, Mardon, Sorensen, Volansky, PRL 109, 021301 (2012)]

Scintillators

[Derenzo et al, 1607.01009]

Superfluid Helium

[Schutz and Zurek, 1604.08206]

Chemical Bond Breaking

H₂-like Molecule

Event Rate $(\overline{\sigma}_n = 10^{-37} \text{cm}^2)$

N₂-like Molecule

Carbon Nanotubes for WIMPs

Weakly coupled 2→2:

[Pospelov, Ritz, Voloshin 2007; Feng, Kumar 2008]

Asymmetric dark matter:

$$m_{\rm DM} \sim 5 \ {\rm GeV} \left(\frac{n_B - n_{\overline{B}}}{n_{\rm DM} - n_{\overline{\rm DM}}} \right)$$

[Kaplan, Luty, Zurek, 2009]

SIMPs: $n \rightarrow 2$ self-annihilations

[Carlson, Hall, Machacek, 1992; YH, Kuflik, Volansky, Wacker, 2014; YH, Kuflik, Murayama, Volansky, Wacker, 2015]

See also elastically decoupling dark matter (ELDERs) [Kuflik, Perelstein, Rey-Le Lorier, Tsai, 2015]

Forbidden channels:

$$2m_{\rm DM} < m_{\rm thing_1} + m_{\rm thing_2}$$

[Griest, Seckel, 1991; D'Agnolo, Ruderman, 2015]